Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 96(16): 6209-6217, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607319

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but dangerous side effect of adenoviral-vectored COVID-19 vaccines. VITT had been linked to production of autoantibodies recognizing platelet factor 4 (PF4). Here, we characterize anti-PF4 antibodies obtained from a VITT patient's blood. Intact mass measurements indicate that a significant fraction of these antibodies represent a limited number of clones. MS analysis of large antibody fragments (the light chain and the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire and reveals the presence of a mature complex biantennary N-glycan within the Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS was used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to the IgG2 subclass and verifies that the light chain belongs to the λ-type. Incorporation of enzymatic de-N-glycosylation into the peptide mapping routine allows the N-glycan in the Fab region of the antibody to be localized to the framework 3 region of the VH domain. This novel N-glycosylation site is the result of a single mutation within the germline sequence. Peptide mapping also provides information on lower-abundance (polyclonal) components of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1-IgG4) and both types of the light chain (λ and κ). This case study demonstrates the power of combining the intact, middle-down, and bottom-up MS approaches for meaningful characterization of ultralow quantities of pathogenic antibodies extracted directly from patients' blood.


Assuntos
Fator Plaquetário 4 , Humanos , Fator Plaquetário 4/imunologia , Fator Plaquetário 4/química , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/química , Autoanticorpos/imunologia , Autoanticorpos/sangue , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Sequência de Aminoácidos , Púrpura Trombocitopênica Trombótica/induzido quimicamente , Púrpura Trombocitopênica Trombótica/imunologia
2.
Commun Biol ; 7(1): 308, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467823

RESUMO

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents. Native mass spectrometry demonstrates that up to three PF4 tetramers can be assembled on a heparin chain, consistent with the molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.


Assuntos
Heparina , Trombocitopenia , Humanos , Heparina/efeitos adversos , Complexo Antígeno-Anticorpo , Fator Plaquetário 4/metabolismo , Trombocitopenia/induzido quimicamente , Plaquetas/metabolismo , Fatores Imunológicos
3.
Anal Chem ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319243

RESUMO

Large immune complexes formed by the cross-linking of antibodies with polyvalent antigens play critical roles in modulating cell-mediated immunity. While both the size and the shape of immune complexes are important determinants in Fc receptor-mediated signaling responsible for phagocytosis, degranulation, and, in some instances, autoimmune pathologies, their characterization remains extremely challenging due to their large size and structural heterogeneity. We use native mass spectrometry (MS) supplemented with limited charge reduction in the gas phase to determine the stoichiometry of immune complexes formed by a bivalent (homodimeric) antigen, a 163 kDa aminopeptidase P2 (APP2), and a monoclonal antibody (mAb) to APP2. The observed (APP2·mAb)n complexes populate a wide range of stoichiometries (n = 1-4) with the largest detected species exceeding 1 MDa, although the gas-phase dissociation products are also evident in the mass spectra. While frequently considering a nuisance that complicates interpretation of native MS data, limited dissociation provides an additional dimension for characterization of the immune complex quaternary structure. APP2/mAb associations with identical composition but slightly different elution times in size exclusion chromatography exhibit notable differences in their spontaneous fragmentation profiles. The latter indicates the presence of both extended linear and cyclized (APP2·mAb)n configurations. The unique ability of MS to distinguish between such isomeric structures will be invaluable for a variety of applications where the biological effects of immune complexes are determined by their ability to assemble Fc receptor clusters of certain density on cell surfaces, such as platelet activation by clustering the low-affinity receptors FcγRIIa on their surface.

4.
Mass Spectrom Rev ; 43(1): 139-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36582075

RESUMO

The intact-mass MS measurements are becoming increasingly popular in characterization of a range of biopolymers, especially those of interest to biopharmaceutical industry. However, as the complexity of protein therapeutics and other macromolecular medicines increases, the new challenges arise, one of which is the high levels of structural heterogeneity that are frequently exhibited by such products. The very notion of the molecular mass measurement loses its clear and intuitive meaning when applied to an extremely heterogenous system that cannot be characterized by a unique mass, but instead requires that a mass distribution be considered. Furthermore, convoluted mass distributions frequently give rise to unresolved ionic signal in mass spectra, from which little-to-none meaningful information can be extracted using standard approaches that work well for homogeneous systems. However, a range of technological advances made in the last decade, such as the hyphenation of intact-mass MS measurements with front-end separations, better integration of ion mobility in MS workflows, development of an impressive arsenal of gas-phase ion chemistry tools to supplement MS methods, as well as the revival of the charge detection MS and its triumphant entry into the field of bioanalysis already made impressive contributions towards addressing the structural heterogeneity challenge. An overview of these techniques is accompanied by critical analysis of the strengths and weaknesses of different approaches, and a brief overview of their applications to specific classes of biopharmaceutical products, vaccines, and nonbiological complex drugs.


Assuntos
Produtos Biológicos , Vacinas , Espectrometria de Massas/métodos
5.
J Am Chem Soc ; 145(46): 25203-25213, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37949820

RESUMO

The massive COVID-19 vaccine roll-out campaign illuminated a range of rare side effects, the most dangerous of which─vaccine-induced immune thrombotic thrombocytopenia (VITT)─is caused by adenoviral (Ad)-vectored vaccines. VITT occurrence had been linked to the production of pathogenic antibodies that recognize an endogenous chemokine, platelet factor 4 (PF4). Mass spectrometry (MS)-based evaluation of the ensemble of anti-PF4 antibodies obtained from a VITT patient's blood indicates that the major component is a monoclonal antibody. Structural characterization of this antibody reveals several unusual characteristics, such as the presence of an N-glycan in the Fab segment and high density of acidic amino acid residues in the complementarity-determining regions. A recombinant version of this antibody (RVT1) was generated by transient expression in mammalian cells based on the newly determined sequence. It captures the key properties of VITT antibodies such as their ability to activate platelets in a PF4 concentration-dependent fashion. Homology modeling of the Fab segment reveals a well-defined polyanionic paratope, and the docking studies indicate that the polycationic segment of PF4 readily accommodates two Fab segments, cross-linking the antibodies to yield polymerized immune complexes. Their existence was verified with native MS by detecting assemblies as large as (RVT1)3(PF4)2, pointing out at FcγRIIa-mediated platelet activation as the molecular mechanism underlying VITT clinical manifestations. In addition to the high PF4 affinity, RVT1 readily binds other polycationic targets, indicating a polyreactive nature of this antibody. This surprising promiscuity not only sheds light on VITT etiology but also opens up a range of opportunities to manage this pathology.


Assuntos
Vacinas contra COVID-19 , Trombocitopenia , Humanos , Anticorpos Monoclonais , Vacinas contra COVID-19/efeitos adversos , Trombocitopenia/induzido quimicamente
6.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834088

RESUMO

We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.


Assuntos
Ácidos Carboxílicos , Halogênios , Halogênios/química , Ânions , Teoria da Densidade Funcional , Ácido Benzoico
7.
Org Biomol Chem ; 21(33): 6743-6749, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552120

RESUMO

We developed an atom- and reaction mass efficient strategy for the preparation of diarylselenides using iodonium salts as reactants. The developed approach allows the obtaining of diarylselenides from the corresponding trimethoxyphenyl-substituted iodonium salts via a two-step one-pot reaction sequence. The proposed metal-free methodology is based on the involvement of both iodonium aryl groups for diarylation.

8.
bioRxiv ; 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37398203

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a rare but extremely dangerous side effect that has been reported for several adenoviral (Ad)-vectored COVID-19 vaccines. VITT pathology had been linked to production of antibodies that recognize platelet factor 4 (PF4), an endogenous chemokine. In this work we characterize anti-PF4 antibodies obtained from a VITT patient's blood. Intact-mass MS measurements indicate that a significant fraction of this ensemble is comprised of antibodies representing a limited number of clones. MS analysis of large antibody fragments (the light chain, as well as the Fc/2 and Fd fragments of the heavy chain) confirms the monoclonal nature of this component of the anti-PF4 antibodies repertoire, and reveals the presence of a fully mature complex biantennary N-glycan within its Fd segment. Peptide mapping using two complementary proteases and LC-MS/MS analysis were used to determine the amino acid sequence of the entire light chain and over 98% of the heavy chain (excluding a short N-terminal segment). The sequence analysis allows the monoclonal antibody to be assigned to IgG2 subclass and verify that the light chain belongs to the λ-type. Incorporation of enzymatic de- N -glycosylation into the peptide mapping routine allows the N -glycan in the Fab region of the antibody to be localized to the framework 3 region of the V H domain. This novel N -glycosylation site (absent in the germline sequence) is a result of a single mutation giving rise to an NDT motif in the antibody sequence. Peptide mapping also provides a wealth of information on lower-abundance proteolytic fragments derived from the polyclonal component of the anti-PF4 antibody ensemble, revealing the presence of all four subclasses (IgG1 through IgG4) and both types of the light chain (λ and κ). The structural information reported in this work will be indispensable for understanding the molecular mechanism of VITT pathogenesis.

9.
J Am Soc Mass Spectrom ; 34(5): 931-938, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014729

RESUMO

The diversity of ubiquitin modifications calls for methods to better characterize ubiquitin chain linkage, length, and morphology. Here, we use multiple linear regression analysis coupled with ion mobility mass spectrometry (IM-MS) to quantify the relative abundance of different ubiquitin dimer isomers. We demonstrate the utility and robustness of this approach by quantifying the relative abundance of different ubiquitin dimers in complex mixtures and comparing the results to the standard, bottom-up ubiquitin AQUA method. Our results provide a foundation for using multiple linear regression analysis and IM-MS to characterize more complex ubiquitin chain architectures.


Assuntos
Ubiquitina , Ubiquitinas , Ubiquitina/química , Espectrometria de Massas/métodos
10.
Inorg Chem ; 62(15): 6128-6137, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000904

RESUMO

Five new copper(I) complexes─composed of the paired dibenzohalolium and [CuL2]- (L = 1,2,4-oxadiazolate) counterions in which O,O-atoms of the anion are simultaneously linked to the halogen atom─were generated and isolated as the solid via the three-component reaction between [Cu(MeCN)4](BF4), sodium 1,2,4-oxadiazolates, and dibenzohalolium triflates (or trifluoroacetates). This reaction is different from the previously reported CuI-catalyzed arylation of 1,2,4-oxadiazolones by diaryliodonium salts. Inspection of the solid-state X-ray structures of the complexes revealed the strong three-center X···O,O (X = Br, I) halogen bonding occurred between the oxadiazolate moieties and dibenzohalolium cation. According to performed theoretical calculations, this noncovalent interaction (or noncovalent chelation) was recognized as the main force in the stabilization of the copper(I) complexes. An explanation for the different behavior of complexes, which provide either chelate or nonchelate binding, is based on the occurrence of additional -CH3···π interactions, which were also quantified.

11.
bioRxiv ; 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36798284

RESUMO

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin, which trigger platelet activation and a hypercoagulable state. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents (especially heparin). We use native mass spectrometry to characterize small immune complexes formed by PF4, heparin and monoclonal HIT-specific antibodies. Up to three PF4 tetramers can be assembled on a heparin chain, consistent with the results of molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.

12.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233178

RESUMO

The co-crystallization of the lead(II) complex [Pb(S2CNEt2)2] with tetraiodoethylene (C2I4) gave the co-crystal, [Pb(S2CNEt2)2]∙½C2I4, whose X-ray structure exhibits only a small change of the crystal parameters than those in the parent [Pb(S2CNEt2)2]. The supramolecular organization of the co-crystal is largely determined by an interplay between Pb⋯S tetrel bonding (TeB) and I⋯S halogen bonding (HaB) with comparable contributions from these non-covalent contacts; the TeBs observed in the parent complex, [Pb(S2CNEt2)2], remain unchanged in the co-crystal. An analysis of the theoretical calculation data, performed for the crystal and cluster models of [Pb(S2CNEt2)2]∙½C2I4, revealed the non-covalent nature of the Pb⋯S TeB (-5.41 and -7.78 kcal/mol) and I⋯S HaB (-7.26 and -11.37 kcal/mol) interactions and indicate that in the co-crystal these non-covalent forces are similar in energy.


Assuntos
Ditiocarb , Halogênios , Halogênios/química , Hidrocarbonetos Iodados , Chumbo , Modelos Moleculares
13.
ACS Omega ; 7(38): 34454-34462, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188282

RESUMO

Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(µ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).

14.
Inorg Chem ; 61(39): 15398-15407, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36137295

RESUMO

A single-crystal X-ray diffraction (XRD) study of diaryliodonium tetrachloroaurates (or, in the recent terminology, tetrachloridoaurates), [(p-XC6H4)2I][AuCl4] (X = Cl, 1; Br, 2), was performed for 1 (the structure is denoted as 1a to show similarity with the isomorphic structure 2a) and two polymorphs─2a (obtained from MeOH) and 2b (from 1,2-C2H4Cl2). Examination of the XRD data for these three structures revealed 2-center C-X···AuIII (X = Cl and Br) and 3-center bifurcated C-Br···(Cl-Au) halogen bonding (abbreviated as XB) between the p-Cl or p-Br atoms of the diaryliodonium cations and the gold(III) atom of [AuCl4]-. The noncovalent nature of AuIII-involving interactions, the nucleophilicity of the gold(III) atoms, and the electrophilic role of p-X atoms of the diaryliodonium cations in the XBs were studied by a set of complementary computational methods. Combined experimental and theoretical studies allowed the recognition of the d-nucleophilicity of the [d8AuIII] atom which, regardless of its rather substantial formal 3+ charge, can function as a d-nucleophilic partner of XB. This conclusion was also supported by theoretical calculations performed for the structures' refcodes BINXOM and ICSD 62511; the obtained data verified the nucleophilicity of AuIII toward a K+ ions or a σ-(Cl)-hole, respectively. All our results, together with consideration of relevant literature, indicate that gold atoms in the three oxidation states (0, I, and even III) exhibit nucleophilicity in XBs.

15.
Chemistry ; 28(70): e202201869, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36178324

RESUMO

The co-crystallization of tetracyanobenzene (TCB) with haloarenes ArX provided six new co-crystals TCB ⋅ ArX (ArX=PhCl, PhBr, 4-MeC6 H4 Cl, 4-MeC6 H4 Br, 4-MeOC6 H4 Cl, 1,2-Br2 C6 H4 ) which were studied by X-ray diffraction. In these systems, the strong collective effect of π⋅⋅⋅π stacking interactions and lone pair-(X)⋅⋅⋅π-hole-(C) bondings between TCB and ArX promote the strength of X⋅⋅⋅Ncyano halogen bonding (HaB). Theoretical studies showed that the stacking interactions affect the σ-hole depth of the haloarenes, thus significantly boosting their ability to function as HaB donors. According to the molecular electrostatic potential calculations, the σ- hole-(Cl) value (1.5 kcal/mol) in the haloarene 4-MeOC6 H4 Cl (featuring an electron-rich arene moiety and exhibiting very poor σ-hole-(Cl) ability) increases significantly in the stacked trimer (TCB)2 ⋅ 4-MeOC6 H4 Cl (12.5 kcal/mol). Theoretical DFT calculations demonstrate the dramatic increase of X⋅⋅⋅Ncyano HaB strength for stacked trimers in comparison with parent unstacked haloarenes.

16.
Molecules ; 27(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956799

RESUMO

In this study, we present results of a detailed topological analysis of electron density (ED) of 145 halogen-bonded complexes formed by various fluorine-, chlorine-, bromine-, and iodine-containing compounds with trimethylphosphine oxide, Me3PO. To characterize the halogen bond (XB) strength, we used the complexation enthalpy, the interatomic distance between oxygen and halogen, as well as the typical set of electron density properties at the bond critical points calculated at B3LYP/jorge-ATZP level of theory. We show for the first time that it is possible to predict the XB strength based on the distance between the minima of ED and molecular electrostatic potential (ESP) along the XB path. The gap between ED and ESP minima exponentially depends on local electronic kinetic energy density at the bond critical point and tends to be a common limiting value for the strongest halogen bond.

17.
MAbs ; 14(1): 2103906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895856

RESUMO

Mass spectrometry (MS) has become an indispensable tool in structural characterization and quality control of monoclonal antibodies (mAbs). Intact-mass analysis is a particularly attractive option that provides a powerful and cost-effective means to not only confirm the structural integrity of the protein, but also probe its interactions with therapeutic targets. To a certain extent, this success can be attributed to relatively modest glycosylation levels exhibited by IgG molecules, which limits their structural heterogeneity and enables straightforward mass measurements at the intact molecule level. The recent surge of interest in expanding the repertoire of mAbs to include other classes of immunoglobulins places a premium on efforts to adapt the IgG-tailored experimental strategies to other classes of antibodies, but their dramatically higher levels of glycosylation may create insurmountable obstacles. The monoclonal murine IgE antibody explored in this work provides a challenging model system, as its glycosylation level exceeds that of conventional IgG mAbs by a factor of nine. The commercial sample, which included various IgE fragments, yields a poorly resolved ionic signal in intact-mass measurements, from which little useful information can be extracted. However, coupling MS measurements with the limited charge reduction of select polycationic species in the gas phase gives rise to well-defined charge ladders, from which both ionic masses and charges can be readily determined. The measurements reveal significant variation of the extent of glycosylation within intact IgE molecules, as well as the presence of low-molecular weight impurities in the commercial IgE sample. Furthermore, incubation of the monoclonal IgE with its antigen (ovalbumin) gives rise to the formation of complexes with varying stoichiometries, which can also be uniquely identified using a combination of native MS, limited charge reduction in the gas phase and data fitting procedures. This work demonstrates that following appropriate modifications, intact-mass analysis measurements can be successfully applied to mAbs beyond the IgG isotype, providing a wealth of information not only on the mass distribution of the intact IgE molecules, but also their large-scale conformational integrity, the integrity of their covalent structure, and their interactions with antigens.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Animais , Anticorpos Monoclonais/química , Glicosilação , Imunoglobulina E , Imunoglobulina G/química , Espectrometria de Massas/métodos , Camundongos
18.
Chem Sci ; 13(19): 5650-5658, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694330

RESUMO

Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability.

19.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458785

RESUMO

Ex-vivo molecular profiling has recently emerged as a promising method for intraoperative tissue identification, especially in neurosurgery. The short-term storage of resected samples at room temperature is proposed to have negligible influence on the lipid molecular profiles. However, a detailed investigation of short-term molecular profile stability is required to implement molecular profiling in a clinic. This study evaluates the effect of storage media, temperature, and washing solution to determine conditions that provide stable and reproducible molecular profiles, with the help of ambient ionization mass spectrometry using rat cerebral cortex as model brain tissue samples. Utilizing normal saline for sample storage and washing media shows a positive effect on the reproducibility of the spectra; however, the refrigeration shows a negligible effect on the spectral similarity. Thus, it was demonstrated that up to hour-long storage in normal saline, even at room temperature, ensures the acquisition of representative molecular profiles using ambient ionization mass spectrometry.


Assuntos
Encéfalo , Solução Salina , Animais , Lipídeos/análise , Espectrometria de Massas , Ratos , Reprodutibilidade dos Testes
20.
Anal Chem ; 94(12): 5140-5148, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35285615

RESUMO

Intact-mass measurements are becoming increasingly popular in mass spectrometry (MS) based protein characterization, as they allow the entire complement of proteoforms to be evaluated within a relatively short time. However, applications of this approach are currently limited to systems exhibiting relatively modest degrees of structural diversity, as the high extent of heterogeneity frequently prevents straightforward MS measurements. Incorporation of limited charge reduction into electrospray ionization (ESI) MS is an elegant way to obtain meaningful information on most heterogeneous systems, yielding not only the average mass of the protein but also the mass range populated by the entire complement of proteoforms. Application of this approach to characterization of two different phenotypes of haptoglobin (1-1 and 2-1) provides evidence of a significant difference in their extent of glycosylation (with the glycan load of phenotype 2-1 being notably lighter) despite a significant overlap of their ionic signals. More detailed characterization of their glycosylation patterns is enabled by the recently introduced technique of cross-path reactive chromatography (XP-RC) with online MS detection, which combines chromatographic separation with in-line reduction of disulfide bonds to generate metastable haptoglobin subunits. Application of XP-RC to both haptoglobin phenotypes confirms that no modifications are present within their light chains and provides a wealth of information on glycosylation patterns of the heavy chains. N-Glycosylation patterns of both haptoglobin phenotypes were found to be consistent with bi- and triantennary structures of complex type that exhibit significant level of fucosylation and sialylation. However, multivariate analysis of haptoglobin 1-1 reveals higher number of the triantennary structures, in comparison to haptoglobin 2-1, as well as a higher extent of fucosylation. The glycosylation patterns deduced from the XP-RC/MS measurements are in agreement with the conclusions of the intact-mass analysis supplemented by limited charge reduction, suggesting that the latter technique can be employed in situations when fast assessment of protein heterogeneity is needed (e.g., process analytical technology applications).


Assuntos
Haptoglobinas , Espectrometria de Massas por Ionização por Electrospray , Glicosilação , Haptoglobinas/química , Haptoglobinas/metabolismo , Análise Multivariada , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...